365 research outputs found

    Bayesian Classifier for Medical Data from Doppler Unit

    Get PDF
    Nowadays, hand-held ultrasonic Doppler units (probes) are often used for noninvasive screening of atherosclerosis in the arteries of the lower limbs. The mean velocity of blood flow in time and blood pressures are measured on several positions on each lower limb. By listening to the acoustic signal generated by the device or by reading the signal displayed on screen, a specialist can detect peripheral arterial disease (PAD).This project aims to design software that will be able to analyze data from such a device and classify it into several diagnostic classes. At the Department of Functional Diagnostics at the Regional Hospital in Liberec a database of several hundreds signals was collected. In cooperation with the specialist, the signals were manually classified into four classes. For each class, selected signal features were extracted and then used for training a Bayesian classifier. Another set of signals was used for evaluating and optimizing the parameters of the classifier. Slightly above 84 % of successfully recognized diagnostic states, was recently achieved on the test data.

    Electronic structure and magnetic properties of Li_2ZrCuO_4 - a spin 1/2 Heisenberg system in vicinity to a quantum critical point

    Full text link
    Based on density functional calculations, we present a detailed theoretical study of the electronic structure and the magnetic properties of the quasi-one dimensional chain cuprate Li_2ZrCuO_4 (Li_2CuZrO_4). For the relevant ratio of the next-nearest neighbor exchange J_2 to the nearest neighbor exchange J_1 we find alpha = -J_2/J_1 = 0.22\pm0.02 which is very close to the critical point at 1/4. Owing this vicinity to a ferromagnetic-helical critical point, we study in detail the influence of structural peculiarities such as the reported Li disorder and the non-planar chain geometry on the magnetic interactions combining the results of LDA based tight-binding models with LDA+U derived exchange parameters. Our investigation is complemented by an exact diagonalization study of a multi-band Hubbard model for finite clusters predicting a strong temperature dependence of the optical conductivity for Li_2ZrCuO_4

    Very Fast Keyword Spotting System with Real Time Factor below 0.01

    Full text link
    In the paper we present an architecture of a keyword spotting (KWS) system that is based on modern neural networks, yields good performance on various types of speech data and can run very fast. We focus mainly on the last aspect and propose optimizations for all the steps required in a KWS design: signal processing and likelihood computation, Viterbi decoding, spot candidate detection and confidence calculation. We present time and memory efficient modelling by bidirectional feedforward sequential memory networks (an alternative to recurrent nets) either by standard triphones or so called quasi-monophones, and an entirely forward decoding of speech frames (with minimal need for look back). Several variants of the proposed scheme are evaluated on 3 large Czech datasets (broadcast, internet and telephone, 17 hours in total) and their performance is compared by Detection Error Tradeoff (DET) diagrams and real-time (RT) factors. We demonstrate that the complete system can run in a single pass with a RT factor close to 0.001 if all optimizations (including a GPU for likelihood computation) are applied.Comment: 11 pages, 3 figure

    Quantum Zakharov Model in a Bounded Domain

    Full text link
    We consider an initial boundary value problem for a quantum version of the Zakharov system arising in plasma physics. We prove the global well-posedness of this problem in some Sobolev type classes and study properties of solutions. This result confirms the conclusion recently made in physical literature concerning the absence of collapse in the quantum Langmuir waves. In the dissipative case the existence of a finite dimensional global attractor is established and regularity properties of this attractor are studied. For this we use the recently developed method of quasi-stability estimates. In the case when external loads are CC^\infty functions we show that every trajectory from the attractor is CC^\infty both in time and spatial variables. This can be interpret as the absence of sharp coherent structures in the limiting dynamics.Comment: 27 page

    On the correllation effect in Peierls-Hubbard chains

    Full text link
    We reexamine the dimerization, the charge and the spin gaps of a half-filled Peierls-Hubbard chain by means of the incremental expansion technique. Our numerical findings are in significant quantitative conflict with recently obtained results by M. Sugiura and Y. Suzumura [J. Phys. Soc. Jpn. v. 71 (2002) 697] based on a bosonization and a renormalization group method, especially with respect to the charge gap. Their approach seems to be valid only in the weakly correlated case.Comment: 7pages,4figures(6eps-files

    Development of boundary layers in Euler fluids that on "activation'' respond like Navier-Stokes fluids

    Full text link
    We consider the flow of a fluid whose response characteristics change due the value of the norm of the symmetric part of the velocity gradient, behaving as an Euler fluid below a critical value and as a Navier-Stokes fluid at and above the critical value, the norm being determined by the external stimuli. We show that such a fluid, while flowing past a bluff body, develops boundary layers which are practically identical to those that one encounters within the context of the classical boundary layer theory propounded by Prandtl. Unlike the classical boundary layer theory that arises as an approximation within the context of the Navier-Stokes theory, here the development of boundary layers is due to a change in the response characteristics of the constitutive relation. We study the flow of such a fluid past an airfoil and compare the same against the solution of the Navier-Stokes equations. We find that the results are in excellent agreement with regard to the velocity and vorticity fields for the two cases

    Some qualitative properties of the solutions of the Magnetohydrodynamic equations for nonlinear bipolar fluids

    Full text link
    In this article we study the long-time behaviour of a system of nonlinear Partial Differential Equations (PDEs) modelling the motion of incompressible, isothermal and conducting modified bipolar fluids in presence of magnetic field. We mainly prove the existence of a global attractor denoted by \A for the nonlinear semigroup associated to the aforementioned systems of nonlinear PDEs. We also show that this nonlinear semigroup is uniformly differentiable on \A. This fact enables us to go further and prove that the attractor \A is of finite-dimensional and we give an explicit bounds for its Hausdorff and fractal dimensions.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s10440-014-9964-

    Temperature dependent optical conductivity of undoped cuprates with weak exchange

    Full text link
    The optical conductivity sigma(omega) is calculated at finite temperature T for CuO_2 chain clusters within a pd-Hubbard model. Data at T = 300 K for Li_2CuO_2 are reanalyzed within this approach. The relative weights of Zhang-Rice singlet and triplet charge excitations near 2.5 and 4 eV, respectively, depend strongly on T, and a rather dramatic dependence of sigma(omega) on the ratio of the first to second neighbor exchange integrals is predicted. On the basis of these results, information about exchange interactionsfor frustrated edge-shared cuprates can be obtained from T-dependent optical spectra. Our results are also relevant for magnetically weakly coupled wide-gap insulators in general.Comment: 5 pages, 3 figure
    corecore